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A NUMERICAL AND ASYMPTOTIC STUDY OF SOME
THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS
RELEVANT TO DRAINING AND COATING FLOWS*

E. O. TUCKtf anp L. W, SCHWARTZ¢

Abstract. Some draining or coating fluid-flow problems, in which surface tension forces are
important, can be described by third-order ordinary differential equations. Accurate computations
are provided here for examples such as ¢"'(z) = —1 4+ 1/¢4* that permit the houndary condition
y — 1 ag £ — —oo, 50 modelling a layer of fluid that is asymptotically uniform behind the draining
front. The ultimate fate of the solution as z increases is studied for the above example, and for
a generalisation involving a small parameter § such that this example is recovered in the limit as
& — 0, but which is such that y — & as # — +o0q, s0 modelhing draining over an already-wet surface.
Matched asymptotic expansions are then used to derive limiting results for small &, this being a
singular perturbation since the problem with § = 0 does not permit ¥ = 0. The physical basis for
this singularity is the well-known impaossibility of moving a contact line over a dry nonslip surface.
Other modifications that avoid the singularity by allowing slip are also discussed.

Key words. differential equations, nonlinear, fluid dynamics, draining
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1. Introduction. Fluid dynamic problems involving surface tension forces are
described in general by partial differential equations in space and time, with rather
high, typically fourth-order, spatial differentiations. For example, the thickness y of a
thin film of viscous fluid draining over a solid surface in an unsteady manner satisfies
such an equation. In some cases, as for example at the front edge of a large drop
of fluid moving on a plane surface, the flow can be treated as steady in a frame of
reference moving with the front. If, in addition, there is only one spatial coordinate
of interest, namely, that in the direction of motion along the plane, the problem has
reduced to an ordinary differential equation in that variable, say z. Further, the
original fourth-order system then permits one explicit integration, effectively due to
conservation of mass, and the result is an autonomous third-order ordinary differential
equation of the form

d3y
3=/ (y)

for some given function f(y).
The actual form of this function f(y) varies according to the physical context,
and we consider here some simple rational-function forms, namely,

(1.1) fly)=-1+y2

(1.2) fy)=—1+(1+8+8)y2—(f+§2)y3
(1.3) fly)=y=% —y73,

(1.4) fly) =y,
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(1.3) fy)=-1+(1+a)/(y* + ),
(1.6) fy)=—1+(1+a)/(y? +ay).

Equation (1.1} is of the greatest interest, and is relevant to fluid draining problems
on a dry wall, invelving the forces of viscosity, gravity and surface tension, subject
to a lubrication approximation. However, its solution has some unacceptable features
when y i8 small, associated ultimately with the impaossibility of moving a contact line
y = 0 over a nanslip truly dry wall. Equation (1.2) is a generalisation to a coating
prablem, or to draining over a wet wall, that sidesteps these difficulties when § is a
small positive parameter measuring wall wetness. Careful numerical solutions of both
(1.1) and (1.2) are provided here, and in particular we find 4-figure accurate solutions
of (1.2) subject to the boundary conditions that y — 1 as 2 — —oo and y — § as
T — +00.

Equation (1.1} is a model for some more complicated problems whose description
may involve partial differential equations in more than one space dimension and time,
or may involve more physical and geometrical complexity. In such cases, the generali-
sation (1.2}, while in principle avoiding the small-y paradox suffered by (1.1), may be
computationally infeasible, or at least “stiff” in the sense that the relevant value of &
may be very much smaller than the computational grid size. This numerical difficulty
is alse comman to other generalisations of (1.1) discussed below, such as (1.5} or (1.6},
which also reduce to (1.1) when o = 0.

Hence there is a powerful incentive to use (1.1) as it stands, which can be justified
and aided by an asymptotic study of the formal limit of solutions of (1.2) as § — (.
This is provided here by matched asymptotic expansions, the solution of {1) being
now viewed as an outer expansion with a singularity at y = 0.

Now we also need solutions of both (1.3) and (1.4}, Equation (1.3) describes the
inner expansion near the singularity, while equation {1.4) provides the link between
the inner and auter expansions, being both the small-y limit of (1.1) and the large-y
limit of (1.3).

It is an important. and unusual feature of this class of asymptotic problem that
the limiting solutions of (1.1} depend significantly on § even when ¢ is {apparently
absurdly) small. It is not enough to observe that so long as § is nonzero, no paradox
occurs; the actual value of § matters.

The final result is a relationship connecting the maximum slope 4 = max |dy/dz|
with the parameter &, and this relationship can be interpreted in terms of an apparent,
contact angle for draining over a dry wall. That is, suppose that we cease computation
of (1.1} at some extremely small {but not actually zero} value of g, at which point
we demand that the downslope 3 be prescribed. The solutions of (1.1} then depend
essentially on the value of 8, while not depending significantly on the small value of y
at which the computation is stopped. The parameter # may be determined as here by
its relationship to a physically specified small parameter like §, or may itself be viewed
as empirical data. It plays the role of the tangent of a “contact angle,” although it is
not a unique physical property like the usual static contact angle, and in particular,
actual contact does not occur.

The final section of the present paper discusses in considerably less detail equa-
tions {1.5) and (1.6), which arise via two different models common in the literature
that allow “slip” of the fluid at the wall, and which both reduce to {1.1) when o — 0.
By using either model, a contact point y = 0 is permitted for a range of (small posi-
tive) values of the slip parameter c. In the model (1.5}, ¥ = 0 is no longer a singular
point, whereas for (1.6) the weakened singularity permits contact at either a zero or
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finite angle. The results with slip are compared with those for the wetting-layer model
(1.2}, and some observations are made regarding relations between static and dynamic
contact angles,

The present wark is intended as a detailed and complete study of a simple well-
defined mathematically-posed problem. The above differential equations are not new,
all of them having been discussed to varying levels in complex applied contexts where
the problem formulation was (inevitably) often ill defined, and where controversy
was commorn. The remainder of this Introduction is a very brief literature survey,
confined in the main to those studies that use a lubrication approximation. More
comprehensive surveys are given by Dussan V. {(1979), Ruschak (1985}, de Gennes
(1985), and Friedmann (1988).

Equation (1.3} is perhaps the most famous of the above equations, having been
introduced by Landau and Levich (1942) {see Levich {1962, p. 680)) for a coating appli-
cation, and used since in many studies of capillarity-dominated coating and other thin-
film applications where gravity is negligible, e.g., by Bretherton {1961}, Friz (1965),
Spiers, Subbaraman and Wilkinson (1974), Tanner {1979), Wilson (1982), Schwartz,
Princen and Kiss (1986). Equation {1.2) may be considered as a generalisation of
(3) to include gravity in the coating problem: it is given explicitly by Levich (1962,
p. 678), and is a special case of equations given by Atherton and Homsy (1976) and
by Tuck and Vanden-Broeck {1984).

The genesis of equations such as {1.1) is more complicated, since there are many
possible escapes from the paradox that arises when (1.1) is used blindly near y = 0,
and thus (1.1} itself is not normally written down. Several authors (e.g., Greenspan
(1978), Hocking (1981}) use equations equivalent to (1.5} or (1.6} that allow the fluid to
slip near the contact point. Dussan (1976) solves the low Reynolds number equations
for flow in a corner where the wall slip is prescribed. Others (see de Gennes (1985))
allow extra terms modelling short-range molecular (e.g., Van der Waals) forces. Both
types of extra term are contained in a more general equation given in the appendix of
Huh and Seriven {1971).

As indicated above, {1.1) has generalisations to globally more complicated prob-
lems, but in which the local difficulties at y = 0 are still present, e.g., Greenspan
(1978), Greenspan and McCay {1981}, Huppert (1982), Tuck, Bentwich, and Van Der
Hoek (1983), Young and Davis (1987), Schwartz and Michaelides (1988}, and Schwartz
{1989). In some of these contexts, solutions have been presented in the limit as the
surface tension tends to zero, a simplification which has its own paradoxes. In seeking
to put surface tension back intoe these problems, we meet (1.1} or something similar;
indeed Huppert {1982) would have derived (1.1} itself, were it not for an incorrect
surface-tension term. There are singular perturbation problems (Howes (1983)) of a
boundary-layer type quite different to the present one, associated with this limit of
small surface tension.

The singular perturbation or matched approximation character of the near-contact
prablem is discussed with slip but without gravity by Cox (1986), and some model
singular perturbation problems have been discussed by Young and Davis (1985). Tan-
ner's (1979) study is perhaps the closest in spirit to the present paper, and he also
matches solutions of (1.3) and (1.4) together, but does not include gravity. This work
of Tanner has been used by de Gennes (1985) as a basis for a theory of apparent
contact angle, a concept that has also been discussed by Hocking (1981).
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2. Dry wall draining. Consider first the differential equation

d3y

(21) —d";:-g =—1+y—2‘

This equation describes the thickness y(z) of a layer of fluid that is draining down a
vertical wall, the third-derivative term representing surface tension effects, the con-
stant term on the right representing gravity, and the term in y—? the viscous shearing
forces. The special draining flow of interest is assumed steady in a frame of reference
that is falling with the layer; hence there is an apparent upward movement of the wall
in this frame. For example, we may hope to use the model to describe a situation like
that of Fig. 1, where a semi-infinite mass of fluid is falling down an otherwise dry wall.

| !

{—-)‘

X

F1a. 1, Sketch af idealised draining flow.

Equation (2.1) clearly possesses the solution y = 1. This is a uniform draining
layer, and in the context of Fig. 1 may be thought of as the limiting configuration far
above the leading edge of the layer. Thus we use a boundary condition of the form

(2.2) y—1 as r— —oa.

A formal linearisation of (2.1) for small departures from this uniform state shows that
(5.2) can be strengthened to

(2.3) y — 1 + aexp [272/3z] cos [31/22-2/37]

where o is a constant.

In fact, (2.3) specifies just one of the three linearly independent solutions of the
linearised equation; one other is unbounded as z — —og, and a third solution involving
a sine instead of a cosine can be absorbed inte an arbitrary choice of the origin of z.
Herce we can expect to generate all solutions of (2.1) that satisfy (2.2} by specifying
the input parameter a. Any algorithm for solving (2.1) subject to (2.3) will generate
a one-parameter family of solutions, all satisfying (2.2).

However, the parameter ¢ can be restricted to a finite interval of real positive
values, since if & = ag generates the solution y = yo(x; aq), then

27 2n
(2.4} ¥ =t (I—WSGOGXP L‘ﬁﬁ])

is also a solution. Thus, multiplication of ¢ by the factor exp[2r/v/3] &= 37.6224 yields
the identical solution, but simply shifted in . A similar consideration shows that no
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extra generality ensues from negative a. For definiteness, we allow ¢ to lie in the range
from about 0.001 to 0.038.

Numerical solution of (2.1) subject to {2.3) is straightforward. If we choose any
starting point x = x5, then we could simply call upon any convenient initial-value
algorithm, with initial conditions on y, ¥, ¥ given by assuming that (2.3} is accurate
at that » = zq. This will be true at any a if xq is sufficiently large and negative;
equivalently, it is true at any zg if ¢ is sufficiently small. Adopting the latter viewpaoint,
we may even take zg = 0. But now the accuracy of our results is dependent upon
smallness of @, and even in the range of small a quoted above, there is a considerable
benefit to be gained from inclusion in (2.3) of second-order corrections, i.e., terms of
order a2, and this was done routinely. We can check this truncation-errar aspect of the
accuracy of the computation by comparing computations at a given a value with those
at /37.6224, and (with the second-order corrections implemented) this comparison
indicated that all results were accurate to better than four significant figures in the
above a-range.

The actual method used was fourth-order Runge-Kutta, with a stepsize that
was allowed to reduce with (in proportion to) y, when y is small and the solution is
changing rapidly. Ample accuracy (i.e., with errors less than the above fourth-figure
truncation error) was achieved by starting the computation with a stepsize of (.05.

The {perhaps surprising) results are as follows. Solutions of (2.1) satisfying (2.2)
neither take the value y = 0 nor approach ¥ = 0 at any z. Every solution takes
positive values as small or as large as we please, since every solution possesses an
infinite number of maxima and minima, the minima taking positive values that become
smaller and smaller in magnitude as z — 400, while the maxima take values that
become larger and larger as x — +o0.

20

0.5

Fia. 2. Ezample solution y = y{z) for dry-wall dreining at & = 0.004.

Figure 2 shows a typical result, at @ = 0.004. This graph indicates a “secondary”
maximum of y = 1.0047 at x = 0.48, a “secondary” minimum of y = 0.9716 at
z = 3.33, a “primary” maximum of ¥ = 1.1902 at =z = 6.33, then a “primary”
minimum of y = 0.3077 at £ = 8.68, after which y increases off the scale of the
graph. But not forever; there follows a “super” maximum of y = 160.81 at z = 21.23,
and a “super” minimum at £ = 27.46, then we expect another even higher “super”
maximum, etc. All the above quoted results are accurate to the quoted four figures for
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the y-values; the actual value of the first “super” minimum is teo small to compute,
but is certainly less than 10-15. The above classification in terms of “ secondary,”
“primary,” and “super” turning points reflects interest in realistic values of y; in
particular, the “super” turning points are clearly nonphysical.

As the parameter o varies, there is a smooth interchange of the roles of the varicus
maxima and minima. Thus if we increase a above 0.004, the “primary” minimum of
y = 0.3077 steadily decreases in size until it. looks more like a “super” minimum.
For example, it reaches the (still four-figure accurate) value y = 0.00000008692 at
a = 0,025, (It is this smooth transformation that inspires confidence that the “super®
minima are not actually zerc, even when too small to compute.) Meanwhile, the
“secondary” minimum is also decreasing in size, and reaches (exactly!) the old primary
value y = 0.3077 at a = 0.004 times 37.6224 = 0.150490, etc. The real range of
interest is one where there are “sensible” primary maxima and minima, namely, about
a = (0.0025 to a = 0.02.

Fic. 3. Phase-plane (i’ versus y) plot for the solution of Fig. 2; the inset is ¢ continuation to large
ny.

An alternative way to present the present results is in the form of a phase-plane
plot such as that of Fig. 3 (also for a = ‘OOLI), plotting ¢ versus y. In that plane,
(2.2) describes a spiral. All solutions spiral out from (1,0), continuing to spiral in
bigger and bigger loops in y > 0, but approaching closer ta y = 0 with each loop. The
insert shows the behaviour of this spiral for larger y, 3’ values, indicating a maximum
upslape of ' = 19.33, the super maximum at y = 160.81, and an apparently straight-
line approach toward the super minimum, the maximum downslope ' = —-58.10 nat
being achieved until % = 10-19,

The conclusion that can be drawn from this work is that there is no solution to
the present equaticn of the type indicated in Fig. 1, i.e., no solution applicable ta
draining over a dry wall of a layer of semi-infinite extent, since the layer thickness
can never be brought to zero at any finite z. The fact that the “primary” minimum
thickness can be made very small indeed at some values of a is of interest, as is the
fact that the problem has no unique solution, the parameter ¢ being undetermined at,
this stage.

The choice of the constant “a” as the parameter describing this family of solutions
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is in fact rather artificial. For example, having solved for the complete family, we could
equally replace a¢ by some output measure of the solution, as the single parameter
identifying individual members of that family. Figure 4 shows (solid curve) plots of
the primary maximum and primary minimum magnitudes as functions of such a new
parameter, namely, the size F of the maximum dewnslope, that occurs at the inflection
point lying between these two turning points. This parameter F plays a role like a
contact angle, even though there is no contact, a feature that we shall explore further.

I

| !
a 1 2 3
8= max|y’|

Fi1G. 4. Computed primary mazima end minima, as functions of the downslope 8 = max jy'(z}| at
the inflection point lying between them. The solid curves are computed by allowing the perameter o
to vary in the family of dry-wall dratning solutions. The dashed marimum is camputed by allowing
§ to vary in the wei-wall draining solution; see Fig. 8 (later) for the relationship between f and §.

3. Wet wall draining. We now generalise (2.1} to

By 1+6486 5467
drd 42 43

(3.1)

where § is an input parameter, noting that {3.1) reduces to {2.1) when § = 0.

Equation (3.1) can be used to describe draining over a wet wall, i.e., a case in
which the draining layer is doubly infinite, extending forever down the wall as well as
forever up it. Equation {3.1) possesses the two uniform solutions y =1 and y = 4,
and we may consider § as the thickness of a precursor wetting layer. Hence it is
apprapriate to solve {3.1) subject to the two houndary conditions

(3.2) y—1 as z— -
and
(3.3 y—& as 1z — +oo.

In fact, even though {3.1) is a third-order ordinary differential equation, the above is a
complete specification of a boundary value problem since the absence of z from (3.1)
implies again that the origin of # can be specified arbitrarily, eliminating the need for
a third boundary condition.
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2401

FiG. 5. Computed solutions y = y(z) for various nonzero §.

It appears that the abave problem possesses a unique solution for any § < 1, and
the results are given in Fig. 5 for various & values. These results were obtained hy
numerical means similar to that described in the previous section. That is, we first
strengthen (3.2) to

(3.4) y — 1 + ae?® cos{qv/3z)

where ¢ = (2 — § — §2)1/3/2 (and in practice even further by including O{a?) terms),
and then solve the initial-value problem (3.1), (3.4) for various choices of a, choosing
a by trial and error until (3.3) is satisfied.

In practice, this trial and error procedure is a search for maxima and minima
near ¥y = & That is, if ¢ is moderately close to its correct value, we may find that,
after oscillating around y = 1 and reaching a primary maximum somewhat above
y# = 1, then y plunges apparently toward zero, but at the last moment reaches a
{primary) minimum somewhat below y = &, then increases above y = 4. If we then
change a slightly and recompute, we may be able to induce a subsequent maximum
just above y = 4, after which y decreases toward zero. So we modify a again slightly
and may be able to induce a further (secondary) minimum, even closer to (but just
below) y = §, etc. It is never possible to stop the solution eventually diverging if we
keep increasing z toward +oo {or decreasing r toward —oo), since the exponentially
growing solution that has been suppressed in approximations like (3.4) eventually
takes over in the form of a numerical instahility. But before this happens, the correct
valiue of o can be determined to at least seven significant figures hy the above process
of creating turning peints, and details of the profile such as the size of the primary
and secondary maxima and minima are established to at least four significant figures.
As in the previous section, the truncation error must then be checked by repeating
the computations with o reduced by the factor 37.6224, and in this way consistent
four-figure accuracy was verified.

Again the use of (y,7') phase-plane plots clarifies this picture. Now there are
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0.8

yf

—-0.5H

¥

F1a. 6. Phase-plane plot for the ezxample § = 0.2 of Fig. 5.

spirals centered on both points (1,0) and (4,0}, and our numerical task is to connect
these two spirals. The result for § = 0.2 is shown in Fig. 6.

The dashed curve of Fig. 4 shows the primary maximum thickness as a function of
the maximum downslope 3 (which itself varies with & in a manner to be discussed be-
low) for these solutions. Clearly the present results are in remarkably close agreement
with those of §2, for all values of 4. If the relationship between 4 and § is known, it
is clear that a possible method for making the solution of (2.1) unique is to terminate
the solution of that equation at an inflection point where the downslope is 4, and to
choose a value of 3 that corresponds to the desired 4.

4, Small-# limit. The limit § — 0 is of considerable interest, and this limit is
singular, not least because the problem with § = 0 has no solution for large z. We
can treat this limit by matched asymptotic expansions, as follows.

The formal result of setting § = 0 as in §2 is now viewed as an outer approximation
which is valid for y = O(1), but loses its validity near a primary minimum ¢ = yq at
2 = 9. The outer approximation is assumed to have been computed at a value of
the parameter @ such that this primary minimum takes small values %, comparable
in magnitude to 4.

Now let us seek an inner expansion valid when r = zq and y = O(8). Set

¥ X
(4.1) y=75. T=T+ 5.

Then the formal limit of {3.1) as § — 0 at fixed X, Y is the differential equation
(4.2) Yym"=Y-2_-Vv-3

Physically, all we have done is to neglect gravity, and rescale, so this is the same
(“Landau-Levich™) equation as describes various flows involving a force balance be-
tween surface tension and viscosity, in the absence of {or with neglect of) gravity.
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In the present context, equation (4.2) describes the flow in the neighbourhood of
the spiral at (y,%') = (4,0) or (¥,¥”) = (1,0) of Fig. 6, and hence we must solve it
subject to the boundary condition

(4.3) V=1 as X — +oa.

Again, there is a one-parameter family of solutions of {4.2) subject to (4.3), and all
members can be found to at least four-figure accuracy by numerical methods directly
equivalent to those already discussed, noting that the oscillatory behaviour equivalent
to (2.3) now occurs as X — +oo. However, it turns out that only one member of
that family is of present interest, namely, that unique member which has vanishing
curvature in the limit as X — —o0, specifically satisfying

(4.4) Y — —X (3log | X)'* + O(X log %/ | X|)

as X — —oo.

The most straightforward computational procedure for identifying this special
solution is to examine the product ¥YY'Y*, which should approach —1 as X — —a0
when (4.4) holds, whereas it becomes either positively or negatively unbounded like
(Y#{—00}X]3/2 whenever Y”{—cc) # 0. The sign (and ultimately the magnitude) of

YY'Y* therefore pravides a sensitive test of how close we are ta the solution satisfying
Y"({—o0) = 0.

Ftg. 7. Inner (Landau-Levich, solid curve) and intermediate (dashed curve) solutions ¥ = Y(X).

Figure 7 (solid curve) shows this unique inner solution. The absolute minimum
value of Y is 0.8215 (in reasonable agreement with Tanner’s (1979) value of “about”
0.825 and with a solution graph of Friz {1965)), and the subsequent maxinum positive
value of the slope Y7 is .1100. These are significant numbers for the general problem,
showing that the actual thickness y will always fall to 82 percent of the precursor
thickness §, befare recovering and approaching y = § in an oscillatory manner, with a
maximum slope of 0.11. These results are confirmed by the numerical solutions of §3
at small finite §.

In order to match these inner and outer approximations, we must consider the
inner limit of the outer problem and the outer limit of the inner problem. It is of
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interest to observe first that if y is small in (2.1) or if ¥ is large in (4.1}, we arrive at
the same “intermediate” differential equation

{4.5) 2 = 22

with z for either y or Y.

Equation {4.5) is yet another differential equation that is of interest in its own
right; see Tanner {1979). However, unlike the others so far considered, there is no
unifarm solution, and the phase plane topology is not a spiral. The solutions of
interest to us have a single minimum z = z, which can be located at z = 0 without
loss of generality. If we scale

(4.6) 2= z2Z(X) with X=2
g

then Z{X) satisfies the same equation (4.5), namely,
(4.7) Zm = Z2-2

and is to be solved subject to the initial conditions
{4.8) Z{0) =1, Z10)y = 0.

Thus, again we have a one-parameter family of solutions, the parameter heing the
value of the initial curvature Z27(0), and all members of this family can be found
numerically without difficulty.

Within this family there is a unique member parametrised by Z#{0) = 1.2836,
having zero curvature at X = —co and hence satisfying {4.4); this member has finite
nongero curvature Z%{+oo) = 2.1591 at the other extreme X — +oo, and is shown
(scaled, see below) as the dashed curve of Fig. 7.

Let us now make use of this fully determined intermediate solution Z{X) as the
link between the inner and outer approximations, as follows. First we assume that
the inner approximation ¥{ X} merges smoothly with the intermediate approximation
(shifted and scaled suitably) for large negative X, writing in that regime

(4.9) V(X) - 22 (X - XO)

0

for some zp and Xg to be determined.

Note that since both ¥ and Z satisfy the boundary condition (4.4) as X — —oo
already, {4.9) says quite a bit more than {4.4). Indeed, (4.4) can be seen to be the
leading term in a series of negative powers of log? | X|, every term of which is uniquely
determined by the leading term, and hence is common to both ¥ and Z irrespective
of the value of zo. In practice, we must compute both ¥ and Z to high accuracy
for a range of large negative X, and then choose both z and Xg so that (4.9} holds
as accurately as possible over that range. This is a difficult numerical task, and our
final result zz = 1.54 has only about 1 percent accuracy. The value Xg of the shift
in the intermediate minimum is of no significance, since the origin of X in the inner
solution is in any case arbitrary. But once it is fixed, the result is the dashed curve of
Fig. 7, showing clearly the smooth merger between inner and intermediate sclutions
as X — —oa.
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Now let us consider the intermediate limit of the outer approximation. That is,
let us assume that when the actual thickness y is small compared to unity, the outer
solution also approaches a shifted and scaled multiple of the intermediate solution,
namely,

zT—x
(4.10) ) = g0z (2222
Yo
But in this case, the minimum at (zq,y¢) is known in advance.
Finally, we match by demanding that (4.9} and {4.10} are identical, and, using
the definition (4.1} of ¥ {and ignoring the arbitrary X-shift Xq), this is true if

{4.11) Yo = 29 = 1.544.

This is again a result of some significance, providing the link between outer computa-
tions done as in §2 with § = 0, and the actual small but nonzero value § of the precursor
thickness. That is, if § is given, we simply choose that member of the one-parameter
family of outer solutions which has a primary minimum thickness 54 percent higher
than the precursor thickness. This principle is confirmed by the computations of §3,
i.e., with this choice, there is close agreement between solutions of (2.1) and (3.1) at
all values of z.

Fd
0 . l [ B R
1.0 a5 ! ot gt g

Fi. 8. Mazimum slope § = max|y'(z)| as o function of 8; note the logarithmic scale, with §
becoming (extremely) small toward the right of the figure. The solid curve is the direct computation
for general nonzero §. The dashed curne is the asympiotic theory for small 8.

For example, Fig. 8 shows a plot of the maximum downslope 8 = max |y'| as a
function of &, on a logarithmic scale such that the abscissa is actually (—log §)1/3. The
solid curve is that from computations based on the finite-§ theory of §3, whereas the
dashed curve is based on assuming that § = 0 in the differential equation as in §2, but
with a primary minimum selected proportional to & according to (4.11). The small-§
asymptotic results are within 1 percent of the finite-§ computations for § < 0.05.

In fact, Fig. 8 is of special importance for the outer problem. The maximum
downslope y* = —fF occurs well into the outer region, at a point that only very slawly
approaches zero thickness as § — 0; for example, it still occurs at about y = 0.1 when
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§ = 10~7, Not only that, but the maximum in the downslope is very broad for small 4.
For example, when § = 10~7, it is not until about y = 0.0015 that the downslope has
fallen to 90 percent of its peak value, and not until about ¢ = 10~% has it reached half
of its peak value. To all intents and purposes, the thickness appears to be approaching
zero linearly (as in the insert to Fig. 3), with a downslope insignificantly different from
A, until y is too small to be detected by an outer chserver.

This behaviour is as if zerc thickness were possible even when § = 0, with a
prescribed contact angle whose tangent is 4. Hence if, as is the case in numerical
studies of problems more complicated than the present one, it is impractical to perform
computations on length scales comparable to 8, we may ignore the precursor layer
altogether. However, when doing so, we must make the problem unique by specifying
an apparent contact angle, of a magnitude whose value can be related to the precursor
thickness & via Fig. 8. To the extent that this curve is close to a straight line, this
implies that the apparent contact slope can be considered as proportional to the one-
third power of the logarithm of the precursor thickness, an idea first suggested by
Tanner {1879); see also de Gennes {1985); however, the actual relationship between 3
and § is as computed in the present study and plotted in Fig. &.

5. Model equations that allow slip. The equations

A3y 1 l+a

(5-1) - TP ra
and

ddy l+a
(52) d=? ~ T g+ oy

are generalisations of {2.1), reducing to that equation when o = 0, with the property
that, for o # 0, each serves to mitigate the singularity at y = 0 that prevents contact
between the liquid surface and the solid wall. They each relax the no-slip condition
an the wall, and are based on the assumption that, for some slip coefficient 4 = A(y),

(5.3) u = Ay,

at z = 0. Here % is the fluid velocity parallel to the wall and z is the space coordinate
perpendicular to the wall. They have their origin in a conjecture due ariginally to
Navier (see, e.g., Panton (1984, pp. 149ff)) that the velocity of slip at the wall should
be proportional to the shear stress there. Although such slip (if present at all) is
almost always negligible, contact without slip involves an infinite surface traction
in the present context. Since this is replaced by a finite surface traction when slip
with any nangzero value of A is allowed, a slip law of this form represents a plausible
alternative to requiring a wetting layer.
In the first model, due to Greenspan (1978), the slip coefficient is taken to be

(5.4) A = o/(3y)

where « is constant, For the present problem, this choice leads to the differential
equation given in (5.1), where «!/2 and y are measured in multiples of the actual layer
thickness far from the front. The contact point where = 0 is no longer singular, and
the slope and higher derivatives may be finite there. The dependence on y in (5.4}
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is chosen so that the effect of the slip is greatest when y << 1, i.e., near the contact
point.
The alternative (5.2) follows from a slip model of Hocking (1981}, in which

{5.5) A=a

where @ is again a (different) constant. Near y = 0, the most singular part of the
solution is given by

8 1/2
(5.6) y = {ﬁ] (zg — x)3/2

which satisfies the equation (5.2) in the limit ¥ << a. Both models (5.1} or (5.2} can
be criticised for allowing some unphysical measure of slip throughout the flow, not
just at y = 0, (5.2) more than {5.1}.

Numerically, either equation can be solved as an initial-value problem, by a
method similar to that described in §3. The starting solution is

(5.7) y = 1 + ae?= cos(qV/3z)

where g is either 2~2/3(1 + a)~1/2 for (5.1), or 2-1(2 + a)¥/3(1 + a)~1/3 for (5.2}, and
the origin of x i arbitrary. The parameter o is free, and, as previously explained,
must be taken to be a small number. For every given choice of a, the entire family
of solutions that asymptote to ¥y = 1 as £ — —oo is generated by allowing e to vary
within a range defined by the factor 37.6224. Thus there is really a two-parameter
family of solutions, the initial parameters being « and a. As z increases, the function

2.0
1.5
¥
1.0
0.5+
0 1 1 L 1
10 12 14 16 18 20

Fta. 9. Comparison of wetting-layer and slip models. The wetting-layer result (solid line} uses
§ = 0.002. The slip result {symbols) is the soluiion of (5.2) with @ = 0.000L. The free parameter in
the slip model has been adjusted so that the magimum y velues are the same.

y(z) oscillates within a growing envelope until the curve meets the axis y = 0.

For a range of values of «, it is possible to closely approximate a given profile
generated by the wet-wall model of §3. Figure 9 shows a comparison between the
wetting-layer result for § = 0.002, as in Fig. 5, and a calculation from (5.1) using
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a = 0.0001 and a value of the parameter a that was chosen so that the maximum
overshoot was the same. The curves are almost indistinguishable; for example, the
value of the maximum downslope agrees to three decimal places. The downslope at
the actual contact point, which may be thought of as an independent parameter in
the slip model replacing the nonphysical parameter a, is equal to 0.689. The rather
large change in downslope from this value to the maximum downslope of 2,01 at the
inflection point accurs for y < 0.01, and is not discernible on the scale of the figure.
An essentially equivalent result has also been obtained using the alternative model
(5.2) with & = 0,01. In that case the contact slope magnitude is 0.30.

The range of the slip parameter a that is needed to approximate a given profile
is by no means arbitrary. The choices of o used here are close to the minimum
permissible values; slightly smaller values will yield solution families whose minimum
overshoot is greater than the value 1.822 in Fig. 9. For a given value of «, the
minimum overshoot. corresponds to a profile that meets the wall at zero slope. Any
further reduction in & is unacceptable, since it will yield a positive minimum value of
¥ and a subsequent very large overshoot on the next cycle. On the other hand, large
values of a are not acceptable either. Values of ¢ greater than about 0.} result in
significant changes in the basic undulation wavelength at O(1) values of y, reflecting
influences in regions far from contact, where the slip assurption is untenable.

A «=0.0001

0.05

1.0

L 1 1 1
¢ ) 2 3 4 [
-y

Fie. 10. Mazimum downslope versus downslope at the wall, for three values of the slip parameter o
in (5.2).

The lower bound on « is illustrated more clearly in Fig. 10, where the magnitude
of the maximum slope 8 = max [y| is plotted versus the contact slope (i.e., the value
of —y' at y = 0) for several values of the parameter . These results used the madel
(5.1), but a similar family of curves can be obtained for the model (5.2). For small
contact slope, the maximum slope reaches a limiting value whaose magnitude increases
as the slip parameter @ is reduced. For any value of a, the maximum slope becomes
close to the contact slope when they are both large. For the model {5.2) this approach
is asymptotic, since the inflection point occurs for ¥ > 0 and only approaches y = 0
in the limit & — 0. For the model (5.1), on the other hand, the inflection point may
move through y = (; thus there is a finite range of values of & where the two slopes
are equal.
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It is interesting to inquire to what extent the slope at contact and the maximum
slope may be identified with the static and dynamic contact angles, respectively. The
static contact angle is a rather well-understood, reproducible, and tabulated quantity
for drops of liquid on a clean surface. The so-called dynamic contact angle is somewhat
more controversial and is, in addition, is often considered to be an “apparent” quantity
because of the ill-defined nature of the conditions in the near vicinity of the contact
point. The advancing contact angle, for motion onto a previously dry surface as we
consider here, is known to be an increasing function of contact line speed. (See Dussan
(1979) for an extensive discussion.)

With tan#, (=“slope at contact”) and tanf, (=“maximum slope”) correspond-
ing to the quantities plotted in Fig. 10, we must return temporarily to dimensional
variables, now written uppercase. For the coating flow problem considered here, the
appropriate scaling is

Y =Y,
(5.8) ooty
X =Y, (3Ca)~1/3z,
where Ca= pl//a is a capillary number and U, 4 and o are contact line speed, fluid
viscosity, and surface tension, respectively. Thus the angles © in the physical problem
are related to those used here (fan@ = y') by

(5.9) tan® = (3Ca)l/3 tanf.

If we consider the static contact angle @, to be a given material constant for
a given physical system, then for motion at some speed U/ and hence some definite
value of Ca, the corresponding value of tan#, computed from (5.9} can be located on
the horizontal axis in Fig. 10. Depending on the chosen value of the slip coefficient
@, the value of #4 is then determined by reading off the vertical axis of this graph.
Finally, the actual dynamic contact angle ©4 is determined by reverting to (5.9). The
resulting functional dependence ©4 = ©4(9,,Ca) exhibits the important qualitative
features of the dependence of contact angle on speed U shown by Dussan (1979).

For simplicity, any of the curves in the figure can be acceptably fitted by the
formula

(5.10) tan @i = [tan3 Ominla) + tan® 63] 1/3
or, in physical variables, by
(5.11) tan Oy = [3Ca tan’ min(a) + tan? 6] 13

where tan#fmin is the value of the maximum downslope when the contact angle is zero
(i.e., the value of the intercept on the vertical axis of Fig. 10) and is thus 4 computable
function of . For very small speeds, the difference tan ®4 —tan 9, is a linear function
of Ca and hence of I/, while at relatively high speeds, “Tanner’s law” {Tanner {1979)),
tan 0, = const.U71/3 is recovered.
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