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The free-surface lubrication equations, including the effects of both gravity and surface
tension, are solved numerically for the evolution of thin liquid films on an inclined plane. The
advancing contact angle is taken to be zero, equivalent to the assumption of perfect wetting.
The shape of a flowing drop compares well, in detail, with a recently published interferometric
study. A mound of liquid whose cross section is intially invariant in the horizontal direction is
allowed to flow down a vertical plane with no slip imposed on the confining side walls. Fingers,
or rivulets, form that are similar to those observed experimentally. The instability that leads to
fingering is lateral flow driven by surface tension with larger curvature at the finger troughs. A

scaling law for the prediction of finger width is derived.

Recently, we have published' a numerical study of flow
down an inclined plane with continuous injection from a
small hole near the top of the plane. This unsteady flow,
driven by gravity, is a simplified model of the flow of lava out
of the vent of a volcano, for example. The basis of the math-
ematical model is the lubrication assumption, i.e., that the
product of Reynolds number based on fluid layer depth and
the slope of the fluid layer, measured normal to the plane, is a
small quantity. Such flows are also of interest at much
smaller length scales; these “‘coating” flows are clearly rel-
evant to painting and also to situations where thin liquid
layers are used to maximize heat or mass transfer across the
interface between a liquid and its vapor.

According to lubrication theory, the evolution of a thin
liquid layer, flowing down a plane slope inclined at an angle
«a to the horizontal, is

h, = V:[h3*(cos aVh — B ~'VV?h —isina)], (D

where 4 is the layer thickness measured normal to the plane
and V is the two-dimensional Cartesian operator
(8/3x,0 /dy). The x and y axes lie in the plane with the x-
direction unit vector i pointing downhill. With L as the char-
acteristic length for x, y, and 4, the reciprocal Bond number
is defined as

B~ '=0/(pgl?), (2)

where o is surface tension, p is liquid density, and g is the
acceleration of gravity. Consistent with lubrication theory,
the mean curvature of the surface is approximated by V2.
The time ¢ is measured in units of 3u/(pgL). The first and
third terms on the right side of Eq. (1) are as used previously
by us'; here we also include the surface tension term.
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We consider the collapse of a mound of liquid, and the
prescription of A(x,y) at t=0 is also required. The two
cases treated here are an initially paraboloidal mound, corre-
sponding to a sessile liquid droplet, flowing down a vertical
wall, and a parabolic mound whose one-dimensional down-
hill flow is disturbed either by imposing a small-amplitude
sinusoidal ripple or by imposition of a type of no-slip condi-
tion on the side walls of a finite-width plate. This last case
may be compared with the experimental results of Huppert?
or Silvi and Dussan V? for those cases where the liquids
strongly wet the inclined plate. In the model, the advancing
contact angle is taken to be zero, in the sense that no restric-
tion is placed on the mass flow in the neighborhood of the
apparent contact line. That is, the algorithm is applied uni-
formly over the mesh and the mobility A * of the empty cells is
equal to zero.

The numerical procedure involves the discretization of
the (x,y) plane into rectangular cells with the depth of the
fluid layer /4 evaluated at the cell midpoints. Fluxes between
cells are calculated at the cell boundaries; thus fluid volume
is strictly conserved. Spatial derivatives are approximated
using low-order central differences. Time integration is done
explicitly with time steps taken sufficiently small to ensure
stability. Accuracy is established by convergence under re-
finement. Typical computations employed a 60X 180 square
mesh and required several hours on either a VAX 785 or
SUN 3/160 workstation with a floating point accelerator.

In Fig. 1 we show results for the flow of an initially
paraboloidal drop that is allowed to flow down a vertical
wall. The initial height is 0.25 mm and the radius, taken as
the characteristic length in (2), is 5 mm; thus the droplet
volume is about 10 u¢. With o taken as 20 dyn/cm and spe-
cific gravity of the liquid as 0.98 (e.g., silicone oil), the pa-
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rameter B ~! is equal to 0.083. Assuming a viscosity of 100
cP, the profile shown corresponds to a time ¢ (after the start
of the flow) of 150 sec. The height difference between con-
tour lines in the figure is 8 um. Also shown in Fig. 1is a
perspective drawing of one-half of the bilaterally symmetric
droplet. The contour plot may be compared with Fig. 3 of
Tanner,? who shows an interferogram taken from an experi-
ment using silicone oil. In all qualitative respects agreement
is seen. As he reports, the base of the droplet consists of two
circular arcs connected by straight sides. A secondary peak
is seen to develop above the primary one with a col, or saddle
point, between them. If a section is taken about halfway
down the drop, the centerline is a local minimum with the
maximum about one-third of the way to the drop’s sides; this
feature is also present in the interferogram, although it is
partially obscured by the presence of what appears to be a
contaminant particle. Specific values of physical parameters
for the experiment are not given, but the contact angle is
certainly small.

The instability of a falling liquid film is commonly ob-
served, e.g., when washing a windshield or painting a verti-
cal wall, where insufficient care leads to the formation of
“drip marks.” Only recently, however, have controlled ex-
periments been performed®’ to quantify the phenomenon.
As in the experiments, we consider an inclined plane with
bounding side walls and a dam at the top of the plane to hold
back a mound of liquid. The cross section of the mound is
invariant in the y direction. At time ¢ =0, the dam is re-
moved, allowing the liquid to flow down the plane. In the
numerical simulation, the mound has an initial parabolic
cross section of area a with a height-to-width ratio of 0.08,
and occupies the top quarter of the computational plane.
Bilateral symmetry is imposed on the left edge of the do-
main; thus it represents the centerline of the physical plane.

FIG. 1. Contour plot and perspective view of a droplet flowing down a verti-
cal wall. See the text for parameter values.
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A no-slip condition is imposed on the right edge by prohibit-
ing downhill flow in the column of cells immediately adja-
cent to this edge. The leading edge of the mound at the no-
slip wall continues to move, however, as a result of side flow
from the interior. The speed at the wall is about one-half the
average speed of the flowing front, in substantial agreement
with the experimental pictures.

In Fig. 2, we show perspective views of the fluid flow
down a vertical wall at two different times for B ~' = 0.1.
Taking a'/? as characteristic length L, the dimensionless
times for Figs. 2(a) and 2(b) are 16 and 120, respectively. It
is seen that fingering is initiated by the no-slip condition on
the right wall with the disturbance propagating inward, ulti-
mately producing a set of relatively uniformly spaced
fingers. The longest of these fingers is markedly wedge
shaped, in agreement with experimental results for liquids
that strongly wet the surface. Figure 3 shows the pattern
generated for the same initial condition, but with B ~' = 1.
The number of fingers formed (across the full channel) is
seen to be reduced from five to three as a result of increasing
the surface tension, say, by a factor of 10. Note the local
maxima in fluid depth near the tips of the developed fingers.
Also discernible in Fig. 3 is a small secondary maximum
similar to that seen for the isolated drop. An explanation for
these undulations, based on a simplified model, will be given
below.

In the absence of the no-slip condition, fingering can
also result from the imposition of a small perturbation on the
uniformly propagating two-dimensional flow down the
plane. Figure 4 shows the result of a small (1% ) sinusoidal
disturbance imposed at ¢ = 12 on a slope inclined at @ = 1

FIG. 2. Finger formation in a liquid film flowing down a vertical wall. The
right edge is a no-slip side wall. Dimensionless times are # = 16 (upper) and
t =120 (lower). The fluid depth is greatly exaggerated. Surface tension
parameter, B ' =0.1.
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FIG. 3. Asin Fig. 2, except B ~' = 1.0; £ = 120.

rad for B ~' = 0.25. The initial mound shape is identical to
that of Figs. 2 and 3. The disturbance first decays until the
curvatures become sufficiently large at the front. Then later-
al flow, caused by greater curvature, hence higher pressures
resulting from surface tension, at the troughs, leads even-
tually to steady growth of the fingers. Indeed, runs were
made for various a, including 7/2, with B ~! = 0, both with
and without the no-slip condition imposed; in none of these
cases did fingering result. This confirms the prediction of
Huppert” that surface tension is the destabilizing force.

As for the most unstable wavelength A * of a falling film
without confining side walls, some progress can be made
purely on dimensional considerations. Assuming that A * de-
pends only on the initial cross-sectional area a, rather than
the details of its shape (as seems to be the case in our numeri-
cal experiments), the full problem consists of Eq. (1) and
the integral initial condition

J Nh(x,t=0)dx=a, 3)
()

where x , is the downhill leading edge of the starting mound.
All parameters, save one, can be absorbed in the affine scal-
ing

h=a'?[o/(pgasina)]~"*H, (4a)

(x,p) =a"?[o/(pgasina)]*(X,Y), (4b)
and

t = 3ua=>"*g 34 (pg sin @) 77T, (4c)

FIG. 4. The growth of a periodic imposed perturbation for a wall inclined at
a = 57.3°. The initial disturbance was an amplitude variation of 1%. Here
=252, B~ ' =0.25.
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where the lower-case variables in Eqs. (4) are, for clarity,
original dimensional variables. Using dimensionless vari-
ables, the right side of Eq. (3) is now equal to one, while Eq.
(1) becomes

H, =V-[H*(SVH —VV*H —i)]. (5)

The single remaining parameter S is equal to [o/
(pga sin @) ]~ "2 cot @. For a vertical wall $=0 and the
most unstable wavelength (an in-plane length) must scale as

A* = const a'/*[a/(pga)]""?, (6)

where, based on the simulations shown in Figs. 2 and 3, we
estimate the constant of proportionality to be about 4. For
finite slope, dimensional considerations predict

A* =a'?[a/(pgasin a))'/*A(S),

where f is some function of its argument. This does not
appear to be completely consistent with the one-third power
dependence predicted by Huppert® and validated experi-
mentally by Silvi and Dussan V? as well as himself.

The origin of the undulations near the moving front is
suggested by a linearized form of the governing equation
that admits a damped sinusoidal solution. Equation (5) may
be written for one space dimension as

HT=[H3(SHX_HXXX“1)])(- (7)

We seek an approximate solution by assuming that the wave-
form is fixed to the front and moves with constant speed U
and that the fluid depth is almost constant. Then H = f(£),
where £ =X — UT and the resulting equation may be
linearized by using an expansion of the form

f=U"Y? 4 ee* + o(e).

Here k can be shown to satisfy a cubic equation with the
relevant roots corresponding to a decaying sinusoid. For
S = 0, k may be found explicitly as 3'/3U ~'/°(1 + 3'/2{) /2.
The damping is larger for finite S; thus the undulations may
not be detectable when « is small.

We conclude that fingering on a finite slope is an inher-
ent phenomena caused by surface tension and that, even with
perfect wetting, it must ultimately occur. For slopes less
than vertical, without gross perturbations such as a confin-
ing side wall, some or all disturbances will first be damped.
Eventually, however, the evolving profile will develop suffi-
ciently high curvature at the moving front that small distur-
bances will initiate fingering. For practical applications, in-
volving plates of finite length, a sufficiently small inclination
angle may remove this usually undesirable effect. We are
currently exploring the extent to which the finite advancing
contact angle may modify the above conclusions as well as
pursuing a more direct stability analysis for the unconfined
problem.
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