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Whether holes in thin films close or open is an important
issue in the design of liquid coatings. Previous analyses, for ex-
ample the work of Taylor and Michael (J. Fiuid Mech, 58, 625
(1973)) predict a static criterion for hole closure based on a
balance between capillary and gravitational forces. In the present
work we develop a numerical model which follows the evolution
of holes to determine whether they close or open. The model is
based on the lubrication approximations and requires input of
the advancing and receding contact angles. Because viscous forces

are also included in the present model, the static criteria can be”

reevaluated using the more complete theory. We find that holes
which the static criteria predict will close can actually open, and
viCE Versa, © 1993 Academic Press, Inc.

1. INTRODUCTION

In the coating industry, the thickness of the coating to be
applied very often involves a trade-off between expense of
application and uniformity of the final coating film. The
thicker the coating, the more material and time are required
in the application process, and hence the greater the cost.
On the other hand, the coating should not be so thin that
the coating laver fails, forming holes and other irregularities.
Nonuniform films are not only aesthetically dispieasing, but,
in many cases, are totally unacceptable. This is especially
true when the coatings are applied for protective purposes.

As the thickness of the coating film decreases, the film
becomes more sensitive to outside disturbances, and holes
often form. The reasons for hole formation are many and
varied. Air bubbles entrapped in the coating fluid, which
may have formed, for example, during the stirring process,
can burst once the film has been applied, forming holes which
may never heal. In air spraying, the impacting droplets of
paint can often create holes in the applied film (2).

Holes can also occur due to inhomogeneities in the solid
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substrate to be coated. For example, if the substrate has con-
taminated patches with lower surface energy than the rest
of the solid, in many cases it will be energetically less ex-
pensive for the coating fluid to stretch around the patch,
leaving a dry area. Depending on the surface energies of the
liquid and solid substrate, and on the fluid viscosity, this dry
paich may remain so,

Another mechanism for hole formation arises due to the
presence of surfactants in the paint. These surfactants gen-
erally have lower surface energies and thus tend to spread
along the fluid interface. Since the bulk of the fluid moves
with the surface layer, craters are often formed (2). If the
crater becomes so deep that the surfactant contacts the solid
surface, forming a contaminated region there, the applied
film may never be restored to its uniform configuration.

The fluid dynamics of film rupture, associated with dis-
joining pressure, has been treated by Burelbach et al (3)
and represents another mechamsm for the formation of holes
in thin liquid films. In this paper, we focus on the fate of
holes once they have been formed, in order to understand
how the holes are affected by film thickness and a host of
other parameters. This issue is especially relevant to the
coatings industry. At the very least, if one accepts that holes
will inevitably form in all coating layers, a study of these
systems will provide the industry with a lower bound for the
coating thickness required o ensure hole “filling.”

Strangely enough, however, the issue of hole closure has
been touched very little by the scientific community. In 1954,
Dombrowski and Frazer (4), in an experimental study into
the disintegration of fluid sheets, showed that large holes
expanded outward, while small holes closed. Padday (5) ex-
tended their experimental work to determine the critical
rupture thicknesses of other fluid /solid systems.

In 1973, Tayler and Michael (T&M) (1) conducted a
stability study of holes in horizontal sheets of fluids to de-
termine a criterion for when holes open, and one for when
they close. In doing so, they solved the static capillarity-
gravity equation for holes in thin sheets of fluid of infinite
extent. For a given fluid depth and contact angle, a unique
solution exists for this equation, which T&M showed to rep-
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resent an unstable equilibrium position; holes of size greater
than the unstable size open, and those of smaller size close.

In a recent paper by Sharma and Ruckenstein (S&R ) (6),
the energetics of hole formation were considered. In their
work, the energy of the hole profile refative to the undisturbed
uniform film, which they called the free energy AF, was used
as a measure of the energy of the system. They denoted the
hole radius at which the free energy of the system is zero as
the critical radius and the radius of the unstable equilibrium
configuration as the transitional radius. They were in agree-
ment with T&M that holes smaller than the transitional ra-
dius closed, but argued that holes of size larger than the tran-
sitional hole size but less than the critical hole size do not
necessarily open but can either close or open out. Their ar-
guments for this are purely qualitative and are based on en-
ergy considerations.

In this paper, we look at axisymmetri¢c holes in sheets of
fluid of finite extent, for example, holes bounded by rigid,
vertical side walls. Because the films are thin, with the contact
angle ¢ being much less than 90°, the Iubrication approxi-
mations may be used to study such systems. The equilibrium
positions are determined by solving the static-capillarity
equation for thin films of finite extent. Unlike for the infinite
film case, the static-capillarity equation now yields two equi-
librium solutions; the unstable equilibrium solution and a
stable solution, where the fluid piles up around the outer
rim of the bounded domain.

We develop a numerical algorithm to solve the unsteady
problem; it is used to march the hole profiles in time, thus
following the evolution of the holes to determine whether
they open or close. In using such an approach, the fluid dy-
namics of the system is incorporated into the analysis, a
feature lacking in the static analyses of T&M and S&R. For
example, a study of the time-dependent problem can incor-
porate the phenomenon of contact angle hysteresis. The pro-
gram has the ability to wet and de-wet the surface, and we
find that the hole profiles either close to form a uniform
liquid film configuration or open up until the stable equilib-
rium position is attained. Whether the profiles actually open,
or ciose, is dependent upon the initial profile configuration,
and not just on the hole size; we show that some holes open
when T&M say they close, and vice versa.

2. EQUILIBRIUM SOLUTIONS

A cross-section of the hole profile considered in the present
work is shown in Fig. |. The hole, of radius R, is axisym-
metric around its center r = 0, and bounded by a rigid vertical
wall at r = L. The fluid surface is given by #(r, t). The fluid
has surface tension ¢ and meets the horizontal substrate with
contact angle ¢, The fluid density is p and gravity g acts
downward. The air/substrate and fluid /substrate interfacial
surface tensions are given by v, and -y, respectively.

For the liquid to be in static equilibrium, the pressure
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FIG. 1. Cross-section of the hole profile.

distribution within it must be hydrostatic. This leads to the
equation
ok = pgh + po, [2.1]

where « is the mean curvature of the profile and p, is an
arbitrary constant. This equation can also be obtained by
minimizing the energy of the system.

For thin films, where the small slope approximation ap-
plies, which is the case for sufficiently small contact angles,
the curvature is approximately given by

K%V2h=%£(r%), [2.2]
so that [ 2.1] becomes
Uég(r%)—pgh=m, [2.3]
with boundary conditions
h{(R) =10, [2.4]
AY(R) = tan ¢. [2.5]

The arbitrary constant py is determined by prescribing the
additional condition that #'(L) = 0.

Scaling r and / by the capillary length @ = Y ¢/ pg renders
[2.3]-]2.5] nondimensional and vields the solution in terms
of modified Bessel functions,

h = Allo(r) — In(R)] + B[Ko(r) — Ko(R)], [2.6]

where

Ki(L)tan{¢)

4= RUDL(R) - K{(R)L(L)

[2.7]
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and

_ Li(L)tan(9)
K((LYL(RY — K(RM(L)~

[2.8]

For a given contact angle ¢ and hole radius R < L, the
liquid volume in the cylindrical region may be calculated.
Results are shown in Fig. 2 for L = 5 and several contact
angles. We note that there are two distinct equilibrium so-
lutions, with different hole radii, for each liquid volume.
There is also a maximum fluid volume, above which no
equilibrium solution exists. Subsequently it will be demon-
strated that the fluid shape corresponding to the smaller hole
radius is unstable, while that for the larger hole radius is
stable,

The maximum volume, for given ¢ and 1., suggests that
there is a critical volume of liquid V*( ¢, L) for which all
holes close, according to the static analysis. Figure 2 indicates
that for ¢ = 0.5, V'* is approximately equal to 4(2xa®) in
dimensional units. The corresponding critical average depth
is i* = V*/ xL.? = 0.32a. This may be compared to a result
of Lamb (7) who solved the exact Young-Laplace equation
[2.1] for a liguid film of infinite extent. His result is 4% =
2a sin{¢/2). The small slope version of this result, which
may be obtained from Eq. [2.6] in the limit as L — oo, is

* = atan ¢, the difference between the two estimates being
of order ¢>. For example, for a contact angle of 0.5, Lamb’s
value for A% 1s about 0.495¢4, while the small slope approx-
imation is about 10% higher, In either event, the infinite film

F1G. 2. Volume ¥ of fluid vs hole radius R for some equilibrium con-
figurations with given contact angle ¢.
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FIG. 3. An example of an unsiable hole configuration ( Ry = 0.05) and
its stable counterpart { Ry = 3.8). The contact angle is ¢ = 0.5.

analysis significantly overpredicts the critical depth necessary
to ensure coverage in the present case.’

Two representative equilibrium configurations, corre-
sponding to the same liquid volume and contact angle, are
shown in Fig. 3.

3. TIME EVOLUTION OF HOLE
FORMATION/DEFORMATION

The evolution equation for the time-dependent motion
of hole formation /deformation is derived from the simplified
Navier-Stokes equations, For thin films where the flow is
approximately unidirectional in the radial direction, the ra-
dially directed nondimensional Navier-Stokes equation is

o
az?

= ~Pr, [3.1]

where u is the radially directed velocity and p, is the non-
dimensional pressure gradient. Validity of [ 3.1] relies on the
assumption that ( pUa/u)(hy,/a)? is much less than unity,
where U is some characteristic velocity. Since the films are
typically thin and slowly moving, this condition is generally
satisfied.

3 In fact, the reason for this is clear. The difference between the two cases
is the boundary condition or contact angle on the side walls, If the same
small contact-angle condition had been imposed there, the critical thickness
required for guaranteed coverage would greatly exceed A¥ since a significant
fluid velume would then be relegated to the meniscus region and would not
be available for uniform coverage. Thus, the infinite film predictions of
Lamb will not, in general, be particularly useful for bounded regions, unless
they are quite large.
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We assume zero shear stress at the free surface and no slip
on the horizontal substrate. This latter condition is a con-
troversial one, however. Since the requirement of no slip is
in direct opposition to the requirement for contact-line
movement, this gives rise to & nonintegrable stress singularity
within the continuum theory. Our justification for imposing
no slip, and thereby ignoring the singularity, lies in the fact
that we solve the governing equation numerically. We argue
that slip is impiicitly built into the numerical scheme through
the finite grid spacing, and thus need not be imposed ex-
plicitly through the boundary conditions.

Grounds for such an argument lie in work done by the
authors in a previous paper (8). In that paper, we solved the
lubrication equation for a two-dimensional drop draining
under gravity down a dry vertical wall. We used two models,
one which relaxed the no-shp condition at the moving con-
tact ling and one which did not. The model with slip was
based on Greenspan’s slip model (9), although the same
analysis could be extended to other slip models.

For the model without slip, the numerical scheme did not
converge under spatial refinement. This was a numerical
manifestation of the stress singularity. The model with slip
was convergent. We showed that, for a given value of the
grid spacing in the no-slip model and a given slip length
(effectively the length over which the no-slip condition is
relaxed ) in the slip model, both models gave exactly the same
solution for the free-surface profiles. We thus concluded that
numerical grid spacing and slip are equivalent.

The computations described in the present work utilize a
uniform gridspacing of 0.05. Based on results of the previous
paper, such a grid spacing corresponds to an effective slip
length, o, in Greenspan'’s slip model, of about 0.005.

At the present time, however, this effective slip length is
still an unknown quantity. Thus, the equivalent value of grid
spacing is not uniquely specified by the problem, but is a
free parameter to be assigned.

Neogi and Miller (10) have argued that this slip length
can be related to surface porosity and roughness. This ar-
gument is substantiated by the recent work of Dussan et af.
{11}, which indicates that this slip length is a material prop-
erty of the liquid /substrate system and so would differ from
one system to another. Thus, whatever reasonable slip length
is assigned in the present work, it is valid for some system,
though lack of experimental data prohibits us from specifying
exactly which one at the present time.

Since the films are thin, we assume the pressure is constant
across the layer, in accordance with lubrication theory, so
that p, is given by

_a[1a( any]_on
=5 lrar\Mar o

The first term on the right-hand side is the surface tension
contribution and the second term is the hydrostatic contri-

[3.2]
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bution. Note that p scales with o/a, and r with 3pa/e so
that the viscosity appears only in the time scaling,

Substituting [3.2] into [3.1], then integrating, using the
boundary conditions of zero shear stress at the free surface
and the no-slip condition on the solid substrate, gives

2 2h
u= —p,[i—z] . [3.3]
2
The radially directed flux,
# rh3
q=f wdz =227 [3.4]
Y 3
and conservation of mass,
ok 1 d(rg)
— e —— ‘5
at rooor [3.5]
then give the evolution equation
oh 1 & 9 (1 af éh dh
o ror [rh (6r (; ar (r;)) - 5)] - [36]
The boundary conditions are
h(R) =0, [3.7]
h'(R) = tan ¢, [3.8]
H(L)=0, [3.9]
and
g(L)=0. [3.10]

The initial condition 2(r, 0) 1s a prescribed initial profile.
Since & and r are both scaled with the capillary length, the
contact angle is the same in both dimensional and nondi-
mensional units. The model assumes that the fluid propagates
with a contact angle equal in value to the static advancing
or receding contact angle.*

This equation is solved using a finite difference time-
marching scheme which solves for the profile A(r, ) as it
cvolves. The advancing contact angle ¢, and the receding
contact angle ¢g, such that ¢p < ¢ < ¢4, are imposed by
not letting the profile move forward or backward, respec-
tively, until these angles are reached. This difference allows
the profile to attain a range of equilibrium states which en-
compasses all steady-state profiles with contact angles sat-
isfying ¢p < ¢ < ¢. In this sense, the dynamic study can
model the phenomenon of contact-angle hysteresis—some-
thing a static analysis can not do.

* This is a controversial issue in itself. for a more detailed discussion on
the topic, sce Monarty (12).
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The flutd recedes by “dewetting” from the solid surface.
Details of the numerical scheme, as well as details on how
dewetting 15 achieved computationally, will be given in the
following section.

For any given hole profile i{r, 0), we then follow its evo-
lution, thus determining whether the hole closes to form the
uniform thin-film configuration or opens out to the stable
equilibrium configuration. For some given profiles A{r, 0),
we show that the T&M criterion is inadequate in predicting
whether holes open outward or not.

In order to model realistic holes, we create holes by math-
ematically modeling the blowing of a jet of air down onto
the center of a thin axisymmetric film. This is achieved com-
putationally by imposing a gaussian pressure distribution on
the film { 13). The thickness of the film decreases and, when
il gets below a certain prescribed minimum thickness, we
assume that the film has ruptured and the hole has been
created.

When the hole size is close to, but larger than, the unstable
hale size R,, the hole can either close in or open outward,
and our computations show this. This sort of situation is
predicted by S&R. S&R predict this behavior for a range of
hole sizes having a radius larger than the unstable hole size.
We find that this range of hole sizes is generally narrow and
that the fate of most realistic holes of size larger than the
unstable hole size is one of hole opening, as predicted
by T&M.

3.1. The Compurational Model

3. 1a. The finite-difference scheme. In order to formulate
the numerical scheme, the flow domain is discretized into #
cells and low-order central differences are employed to eval-
uate the depth of fluid z = A{r, t) at the midpoint of these
cells, with fluxes being computed at cell boundaries. Mass
is strictly conserved by demanding

RN S LA S .
h(i) h{i) N [r(i+ 1/2)g(D)

—r{i— 1/2)q(i — 1)},

where g(i) is the flux between the ith and / + lth nodal
points, and the k superscript indicates the kth time level,

The solution is marched in time using a partially implicit
Crank-Nicolson-type method, so that the evaluation of A(§)
at the (k + 1 )th time step is obtained according to the nu-
mericai scheme

[3.11)

AT+

d ; Skt
Srenar U 124

At
2r(i)Ar
X[+ 1/2)q(i)* — r(i = 1/ 2)g(i — 1)1,

—r(i = 1/2)q( — D] = h(iY ~

[3.12]
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where, if r(i) = (i — 0.5)Ar, then
gy = [(h(i)k + fz?(i + l)k)]
. (D — (2i+ DAG+ D+ (G + DA+ 2)F
[ (i +0.5)ar°
(i DAl = D)F = (2 = DD+ ia(E+ D
(i - 0.5)Ar
- "_ + L
B hii+ 1) h(D) } (3.13]
Ar

Note that the nonlinear /° term is always evaluated at the
previous k time level.

The contact line is at i = igq — 5. At the { = iy grid
point, the higher derivative is evaluated using A { igan ), #(igan
+ 1), and ' (igan — 1), where ' (igan — %) = tan ¢.

The numerical scheme at the contact line is illustrated in
Fig. 4,

3.1b, Advancing and receding the contact line. For the
profile to either advance or recede, we prescribe the advanc-
ing contact angle, ¢, and the receding contact angle, ¢g,
where ¢ < ¢ < ¢,. The contact line advances by taking
Gligan — 1) = 0 unless the numerical contact angle (that
angle based on numerical computations at the contact line)
is exceeded. This translates to

Q(islan - l) =0 whe

2 R
n __;..l(_lit-a.n_) < tan ¢A-
Ar

[3.14]

If the numerical contact angle 2h (ig. )/ Ar exceeds the ad-
vancing contact angle, then the contact line is advanced by
decrementing i, by one grid point, so that the new contact
line 1 at igun = fstan — 1. If fgarr = 1, the hole has closed and
the boundary conditions change to symmetry boundary
conditions, i.e., g{i — 1) = 0 and dhdr = 0.

The receding contact line has a similar criterion and re-
cedes (or dewets) when

2h(i)

< tan ¢g.
Ar Ox

[3.15]

i=istart«|

{oi=istart
.

alistart-1) : 1 qtistart)

contact-line
i=istart-1/2

FIG. 4. The numerical scheme at the contact line of a rim of fluid
enclosing a circular hole.
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The contact line is receded by incrementing it by one grid
point. such that iy = ian + 1. In addition, the old A(Zuaq)
is set to zero. In order to conserve volume, the new A(in)
must be changed accordingly. Thus, before receding the
contact line, we set

7(isan)

Aligan + 1) = Bligan + 1} + B (igan) m s
start

[3.16]

and then

Iigan) = O [3.17]

Finally, we can recede the contact line so that the new iy,
18 at lgan = fggan T 1.

At times shortly after the contact line recedes, the nu-
merical contact angle may be ( falsely) greater than the ad-
vancing contact angle. If the contact line is allowed to ad-
vance in response to this, the new numerical contact angle
will be less than the receding angle, and so it will recede, and
the process will repeat itself. Thus, the contact line will tend
to oscillate back and forth between the advancing and re-
ceding modes. Of course, this situation would not arise in
reality and is really just a manifestation of the artificial way
in which the contact line is advanced and receded.

One way of circumventing this problem is to set a com-
putational flag, which ailows the computer to discern between
when the contact line 1s physically advancing, or receding,
and when its tendency toward movement is solely artificial,
We thus enforce that the contact line is advanced when
N igar YT 10r > Bh(igan)*/8r. The converse holds for the
receding case.

4. STABILITY STUDY

The time-dependent program provides us with a vehicle
by which to conduct a stability study of the equilibrium pro-
files. By perturbing the profiles so that R = Ry + 8, where
Ry is the radius of the equilibrium configuration and é is a
small number, we can follow the evolution of the profiles to
determine whether they are stable or unstable. If the profiles
return to their initial states, they are stable. Justification in
drawing such a conclusion is that the nonlinearity of the
governing equation, as well as “noise™ implicit to numerical
calculations, entails that the perturbation encompasses all
modes of instabilities. On the other hand, if a small pertur-
bation initiates gross movement, we can conclude that the
hole configuration is unstable. The rate at which the per-
turbed profile returns, or diverges, from its initial position
gives an indication as to how stable or unstable a particular
configuration is.

We consider the case when the contact angle is ¢ = 0.5,
Figure 2 indicates that the critical volume above which all
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holes close is V'* = 4 in dimensionless units. At this volume,
the hole radius is Ry ~ 1.2.

We perturb those profiles which lie on the curve to the
left of the critical volume. Perturbing, so that R = Ry — 4,
we find that all of the holes close, thus indicating that these
equilibrium configurations are unstable. These are the hole
configurations analyzed by T&M and S&R in their work on
holes in infinite sheets of fluid and we confirm their conclu-
sion. In doing so, we confirm our suspicion that the smaller
hole in Fig. 3 is unstabie.

Perturbing these unstable holes to the right, such that R
= Ry + &, produces various outcomes, depending on the
volume of the fluid. When the hole configuration, with V' =~
1 (Ry = 0.05), is perturbed to the right, the hole immediately
seeks its secondary equilibrium solution, at Ry = 3.8, For
these thin films, the stabilizing gravitational force is negligible
and the fluid predominantly wants to minimize surface en-
ergy. It docs this by reducing its surface arca and retracting
to its secondary equilibrium position. The speed at which
the hole retracts to the secondary equilibrium configuration
indicates that its first configuration is a highly unstable one.

For thicker films, a much larger perturbation is required
to cause a hole to move toward its secondary equilibrium
position. The gravitational energy is minimized by hole clo-
sure and this counteracts the tendency of the profile to min-
imize its surface energy by opening. Often the perturbation
15 quickly damped and the system attains a steady-state con-
figuration lying within the contact-angle hysteresis range.

The right-hand side of the ¥ vs R curve in Fig. 2, where
R > 1.2, corresponds to the larger hole configuration of the
two equilibrium solutions. Perturbing, so that R = Ry — 4,
shows that thicker films tend to stabilize and attain an equi-
librium position lying within the contact-angle hysteresis
range. On the other hand, for thinner films, there is a rela-
tively large restoring force due to surface energy minimiza-
tion which causes the holes to recover their initial position
immediately, even after the slightest perturbation. The fact
that these larger holes return to their original positions sub-
sequent to a perturbation indicates that they are stable, thus
confirming our suspicion that the larger hole configuration
in Fig. 3 is indeed stable.

Figure 5 gives a summary of the stability analysis.

5. SOME COMPUTATIONS

In order to create a realistic hole computationally, we have
developed a numerical scheme to mathematically model a
jet of air blowing down on a thin film. The hole is created
when the thickness of the film becomes less than some critical
thickness. Once these holes are created, the computational
model, described in Section 3, is used to calculate their evo-
lution in time.

Computations are based on a static contact angle of ¢ =
0.5 and advancing and receding contact angles of 0.55 and
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encompassing hole sizes just greater than the transitional
{unstable) hole size, in which these holes can either close or
open. Generally this region is narrow. Some of these holes
have enough energy to negotiate the energy maximum and
actually close. Figure 6 shows a pressure-generated hole
which T&M say should open out and yet actually closes.
Figure 7 shows a pressure-generated hole which is of the
same size as the hole in Fig. 6 but with a slightly lower surface
energy. The hole starts to close, then finds it does not have
enough energy to do so and actually opens outward to the
stable-hole configuration.

4.5 5

rs

3.5

FIG. 6. A realistic hole with radius larger than the transitionat radius,
which closes. T&M's analysis predicis the hole opens. The dashed line is

the unstable equilibrium solution.

FIG. 7. The same hole size as that in Fig. 6, but with a slightly lower
local energy initiaily. The energy of the initial profile is larger than the energy
of a uniform film, yet the hole opens outward. The dashed lines represent

the equilibrium selutions.

Contact-line motion, and the magnitude of the viscous
dissipation associated with it, is a function of the amount of
slip allowed in the model. The effective slip coefficient can
be made smaller by about a factor of four by halving the
gridspacing (8). We have repeated the calculations for the
holes shown in Figs. 6 and 7 for a grid spacing of Ax = 0.025.
In this case, there was enhanced viscous dissipation and this
detracted from the free energy of the system, so that the hole
of Fig. 6 no longer had enough energy to close. The advancing,
contact angle for this hole was then decreased by 0.08 and
the hole had enough energy to close. From this we conclude
that the issue of hole closure/opening is dependent on the
amount of slip. As discussed earlier, however, this parameter

1s a property of the fluid/substrate system and is unknown
at the present time.

Figure 8 represents the time evolution of the free energy
AF, ie., the energy of the system relative to the uniform
film configuration, of the hole in Fig. 7 as it closes. It can be
seen that the profile always evolves in the direction of min-
imum energy. It is interesting to note that the hole dewets
before its free encrgy becomes negative.

6. CONCLUSIONS

In this paper, we have developed a tool to perform time-
dependent calculations of holes closing and opening. This
tool has benefits that the static analysis could not provide,
since it can take into account the characteristics of the film
profile on a local scale. For example, external vibrations can
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FIG. 8. Evolution of the free energy AF (with respect to the uniform
film configuration) of the hole in Fig. 7, with the size of the hole R,

give rise to local energy densities in the film profile, which
would provide the hole with enough energy to close. Since
the static analyses depend only on the hole size, film depth,
and static contact angle, they could not take into account
such local behavior and can only provide predictions in a
more global sense.

The present analysis also has the ability to handle the
complex phenomenon of contact-angle hysteresis. The best
that the static analysis can do i handling this phenomenon
is to define a range of configurations, ¢r < ¢ < ¢, in which
the holes can either close inwards or open outward. As has
been demonstrated, the time-dependent calculations can ac-
tually determine the fate of all holes lying in this region de-
finitively.

The stability study is greatly simplified by using a time-
dependent scheme to follow the subsequent evolution of a
hole profile once it has had some perturbation imparted to
it. The relative rate at which the profile responds to a per-
turbation gives an indication of the magnitude of the insta-
bility of the profile. For example, our stability study shows
that holes in thin fluids are highly unstabie.

In order to study the behavior of realistic holes, we have
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developed a computational model of a jet to create holes in
sheets of fluids. Results have shown that the static criterion
for holes closing and opening is quite good, except for holes
of size just greater than the transitional hole size. In this
region, holes can either close or open, as predicted by S&R.
Generally speaking the closer the hole is to the transitional
hole radius, the more probable it is the hole will close. How-
ever, depending on the surface energy of the film profile,
some larger holes may close, while the smaller ones open.
Since local energy densities are quickly damped, this region
of “metastability™ is generally narrow and we find that most
holes do actually obey the capillary-statics criterion of T&M.

Incorporating different flow rheologies, for example non-
Newtonian fluids, as well as the presence of surfactants, lies
within the capabilities of the numerical scheme.

Because this problem involves the movement of a fluid
within two well-defined configurations, it lends itself very
well to a study of the dependency of the boundary conditions
imposed at the contact line and the rate of contact-line prop-
agation. For example, the time it takes for a weli-defined
hole to close could easily be measured experimentally. How
well the experimental time matches that determined by the
time-marching scheme could be used as a datum to gauge
the accuracy of different contact-line boundary conditions.
This is a large and complicated study, however, and is beyond
the scope of the present work.
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